正在加载

智能机器人工作原理(智能机器人的工作原理)

  • 作者: 沈米
  • 发布时间:2023-09-05


人工智能的原理是什么

人工智能的原理,简单的形容就是:

人工智能=数学计算。

机器的智能程度,取决于“算法”。最初,人们发现用电路的开和关,可以表示1和0。那么很多个电路组织在一起,不同的排列变化,就可以表示很多的事情,比如颜色、形状、字母。再加上逻辑元件(三极管),就形成了“输入(按开关按钮)——计算(电流通过线路)——输出(灯亮了)”

这种模式。

想象家里的双控开关。

为了实现更复杂的计算,最终变成了,“大规模集成电路”——芯片。

电路逻辑层层嵌套,层层封装之后,我们改变电流状态的方法,就变成了“编写程序语言”。程序员就是干这个的。

程序员让电脑怎么执行,它就怎么执行,整个流程都是被程序固定死的。

所以,要让电脑执行某项任务,程序员必须首先完全弄清楚任务的流程。

就拿联控电梯举例:

别小看这电梯,也挺“智能”呢。考虑一下它需要做哪些判断:上下方向、是否满员、高峰时段、停止时间是否足够、单双楼层等等,需要提前想好所有的可能性,否则就要出bug。

某种程度上说,是程序员控制了这个世界。可总是这样事必躬亲,程序员太累了,你看他们加班都熬红了眼睛。

于是就想:能不能让电脑自己学习,遇到问题自己解决呢?而我们只需要告诉它一套学习方法。

大家还记得1997年的时候,IBM用专门设计的计算机,下赢了国际象棋冠军。其实,它的办法很笨——暴力计算,术语叫“穷举”(实际上,为了节省算力,IBM人工替它修剪去了很多不必要的计算,比如那些明显的蠢棋,并针对卡斯帕罗夫的风格做了优化)。计算机把每一步棋的每一种下法全部算清楚,然后对比人类的比赛棋谱,找出最优解。

一句话:大力出奇迹!

但是到了围棋这里,没法再这样穷举了。力量再大,终有极限。围棋的可能性走法,远超宇宙中全部原子之和(已知),即使用目前最牛逼的超算,也要算几万年。在量子计算机成熟之前,电子计算机几无可能。

所以,程序员给阿尔法狗多加了一层算法:

A、先计算:哪里需要计算,哪里需要忽略。

B、然后,有针对性地计算。

——本质上,还是计算。哪有什么“感知”!

在A步,它该如何判断“哪里需要计算”呢?

这就是“人工智能”的核心问题了:“学习”的过程。

仔细想一下,人类是怎样学习的?

人类的所有认知,都来源于对观察到的现象进行总结,并根据总结的规律,预测未来。

当你见过一只四条腿、短毛、个子中等、嘴巴长、汪汪叫的动物,名之为狗,你就会把以后见到的所有类似物体,归为狗类。

不过,机器的学习方式,和人类有着质的不同:

人通过观察少数特征,就能推及多数未知。举一隅而反三隅。

机器必须观察好多好多条狗,才能知道跑来的这条,是不是狗。

这么笨的机器,能指望它来统治人类吗。

它就是仗着算力蛮干而已!力气活。

具体来讲,它“学习”的算法,术语叫“神经网络”(比较唬人)。

(特征提取器,总结对象的特征,然后把特征放进一个池子里整合,全连接神经网络输出最终结论)

它需要两个前提条件:

1、吃进大量的数据来试错,逐渐调整自己的准确度;

2、神经网络层数越多,计算越准确(有极限),需要的算力也越大。

所以,神经网络这种方法,虽然多年前就有了(那时还叫做“感知机”)。但是受限于数据量和计算力,没有发展起来。

神经网络听起来比感知机不知道高端到哪里去了!这再次告诉我们起一个好听的名字对于研(zhuang)究(bi)有多重要!

现在,这两个条件都已具备——大数据和云计算。谁拥有数据,谁才有可能做AI。

目前AI常见的应用领域:

图像识别(安防识别、指纹、美颜、图片搜索、医疗图像诊断),用的是“卷积神经网络(CNN)”,主要提取空间维度的特征,来识别图像。

自然语言处理(人机对话、翻译),用的是”循环神经网络(RNN)“,主要提取时间维度的特征。因为说话是有前后顺序的,单词出现的时间决定了语义。

神经网络算法的设计水平,决定了它对现实的刻画能力。顶级大牛吴恩达就曾经设计过高达100多层的卷积层(层数过多容易出现过拟合问题)。

当我们深入理解了计算的涵义:有明确的数学规律。那么,

这个世界是是有量子(随机)特征的,就决定了计算机的理论局限性。——事实上,计算机连真正的随机数都产生不了。

——机器仍然是笨笨的。

更多神佑深度的人工智能知识,想要了解,可以私信询问。

机器人的工作原理是什么

机器人的工作原理

从最基本的层面来看,人体包括五个主要组成部分:

身体结构

肌肉系统,用来移动身体结构

感官系统,用来接收有关身体和周围环境的信息

能量源,用来给肌肉和感官提供能量

大脑系统,用来处理感官信息和指挥肌肉运动

机器人的组成部分与人类极为类似。一个典型的机器人有一套可移动的身体结构、一部类似于马达的装置、一套传感系统、一个电源和一个用来控制所有这些要素的计算机“大脑”。从本质上讲,机器人是由人类制造的“动物”,它们是模仿人类和动物行为的机器。机器人是“能自动工作的机器”,它们有的功能比较简单,有的就非常复杂,但必须具备以下三个特征:

身体是一种物理状态,具有一定的形态,机器人的外形究竟是什么样子,这取决于人们想让它做什么样的工作,其功能设定决定了机器人的大小、形状、材质和特征等等。

大脑就是控制机器人的程序或指令组,当机器人接收到传感器的信息后,能够遵循人们编写的程序指令,自动执行并完成一系列的动作。控制程序主要取决于下面几种因素:使用传感器的类型和数量,传感器的安装位置,可能的外部激励以及需要达到的活动效果。

动作就是机器人的活动,有时即使它根本不动,这也是它的一种动作表现,任何机器人在程序的指令下要执行某项工作,必定是靠动作来完成的。

人工智能的工作原理是什么

人工智能的工作原理是:计算机会通过传感器(或人工输入的方式)来收集关于某个情景的事实。计算机将此信息与已存储的信息进行比较,以确定它的含义。计算机会根据收集来的信息计算各种可能的动作,然后预测哪种动作的效果最好。计算机只能解决程序允许解决的问题,不具备一般意义上的分析能力。

智能机器人的工作原理

英语里“机器人”(Robot)这个术语来自于捷克语单词robota,通常译作“强制劳动者”。用它来描述大多数机器人是十分贴切的。世界上的机器人大多用来从事繁重的重复性制造工作。它们负责那些对人类来说非常困难、危险或枯燥的任务。最常见的制造类机器人是机器臂。一部典型的机器臂由七个金属部件构成,它们是用六个关节接起来的。计算机将旋转与每个关节分别相连的步进式马达,以便控制机器人(某些大型机器臂使用液压或气动系统)。与普通马达不同,步进式马达会以增量方式精确移动。这使计算机可以精确地移动机器臂,使机器臂不断重复完全相同的动作。机器人利用运动传感器来确保自己完全按正确的量移动。这种带有六个关节的工业机器人与人类的手臂极为相似,它具有相当于肩膀、肘部和腕部的部位。它的“肩膀”通常安装在一个固定的基座结构(而不是移动的身体)上。这种类型的机器人有六个自由度,也就是说,它能向六个不同的方向转动。与之相比,人的手臂有七个自由度。